

Founder & CEO, Kinetic River

Today's Webinar

Int	troduction to the <i>Delaware</i> Flow NanoCytometer®	G. Vacca		
•	Features and capabilities			
•	Results to date			
•	Configurations			
Toward Flow-Based Rapid Diagnostics of Kidney Disease C. Wa				
•	Polycystic Kidney Disease (PKD)			
•	Current methods and unmet needs			
•	Urine extracellular vesicles (EVs) as PKD biomarkers			
•	Noninvasive PKD dia/prognostics with ultrasensitive flow cytomet	ry		
Q&A				

Proprietary. © 2010-2024 Kinetic River Corp. All Rights Reserved.

KINETIC RIVER

Kinetic River

Kinetic River Team

GIACOMO VACCA, PHD Founder, President, & CEO

ALAN CHIN, PHD **Principal Scientist**

ROSEMARY COATES, MBA Advisor, Reshoring Institute

DAN ESTOQUE, BS System Engineering Consultant

RICH HANSON, MS R&D Technician

Laboratory Technician

KJ

JKI Software Development Partner

ORIN LANEY, MS Electronics Engineer Consultant

HANNU LEHTIMÄKI, MS Sr. Mechanical Engineering Consultant

KINETIC RIVER

RICHARD MCKAY, PHD Advisor, Full Spectrum

NANOSTARS South Central

Scientific

E-HV

West

SEAN MURPHY, MS Advisor, SKMurphy

ASHLEY SLOAT, PHD Advisor, Aurora Consulting

NANOBIO SYSTEMS Midwest, Central Canada

NEW ENGLAND ANALYTICAL **INSTRUMENTS** Northeast

BONNIE SUN, BS

Office Administrator

CytoFlow Service Distribution / Service Partner, Europe

Delaware Flow NanoCytometer[®]

What Matters in EV Analysis?

- Single-particle detection (not bulk/averages)
- Sensitivity (smaller particles)
- Multiparametric detection (simultaneous biomarkers)
- Throughput (greater accuracy)
- Flexibility (measuring a wide range of particle sizes)
- Stability (confidence in results)
- Ease of use (focus on measuring, not tweaking)

Delaware Flow NanoCytometer® for EV Analysis

- high resolution and sensitivity
- stable, pressure-driven flow
- up to 5 lasers
- up to 6 fluorescence channels
- measures EVs and cells

Delaware: Single-Particle Detection

liposome standards: Acoerela
 AcoLS

- sized by NanoFCM: 58 nm
- sized by ZetaView: 77 nm

Proprietary. © 2010-2024 Kinetic River Corp. All Rights Reserved.

 $\mathsf{R}\mathsf{I}\mathsf{V}\mathsf{F}\mathsf{R}$

Delaware: 60-nm Scattering Sensitivity (PS NPs)

Delaware: 28-nm Scattering Sensitivity (Au NPs)

102 nm Gold

28 nm Gold

- Au NPs: nanoComposix
- sized by TEM

Delaware: 6-nm Resolution (2% CV)

• CV=σ/μ =FWHM/(2.36*μ)

Proprietary. © 2010-2024 Kinetic River Corp. All Rights Reserved.

Delaware: Large Dynamic Range

Delaware: Human Cell-Derived EVs (Scattering)

Delaware: Up to 6 Fluorescence Channels

- multiparametric phenotyping
- flow: complete,
 simultaneous
 colocalization,
 all the time

K INF

 $\mathsf{R}\mathsf{I}\mathsf{V}\mathsf{F}\mathsf{R}$

Delaware: Human Cell-Derived EVs (Scattering, FL)

Delaware: Cell Assay: Stained VeriCell Leukocytes

Panama Software: Instrument Control, Data Display

Proprietary. © 2010-2024 Kinetic River Corp. All Rights Reserved.

KINETIC RIVER

Delaware Technical Features and User Benefits

	Features	Benefits
•	highly stable, pressure-driven Shasta fluidics	\rightarrow more precise measurements
•	proprietary probe wash design	\rightarrow lower background, carryover
•	high-power lasers	\rightarrow higher signal-to-noise ratios
•	UV/violet lasers	\rightarrow higher scattering signals
•	proprietary collinear excitation architecture	\rightarrow improved scattering sensitivity
•	three scattering detection channels	\rightarrow improved scattering resolution
•	proprietary seven-element objective	\rightarrow improved light collection
•	proprietary stray light rejection architecture	→ reduced background levels, more robust operation
•	all-PMT detection	\rightarrow high sensitivity, low dark current
•	proprietary signal processing algorithms	\rightarrow reduced background events
•	intuitive, flexible user interface	ightarrow easy to swap b/w different operating modes

Delaware Configurations

Basic	High Sensitivity	Five-Laser
Configuration	Configuration	Configuration
2 Lasers	3 Lasers	5 Lasers
405 nm, 250 mW 488 nm, 200 mW	375 nm, 50 mW 405 nm, 250 mW 488 nm, 200 mW	375 nm, 50 mW 405 nm, 250 mW 488 nm, 200 mW 561 nm, 50 mW 640 nm, 150 mW
Standard	Ultrasensitive	Ultrasensitive
Scattering	Scattering	Scattering
FSC, SSC	FSC, SSC	FSC, SSC
(405 and 488 nm)	(375, 405, 488 nm)	(375, 405, 488 nm)
2 Fluorescence	4 Fluorescence	6 Fluorescence
Channels	Channels	Channels
525/50 580/23	525/50 580/23 615/24 697/58	440/40 (optional) 525/50 580/23 615/24 697/58 755/35

Delaware Flow NanoCytometer® for EV Analysis

- 3 configurations for broad range of needs
 - up to 5 lasers / 6 fluorescence channels
- 68-nm single-liposome detection
- 60-nm single-NP detection (PS)
- 28-nm single-NP detection (Au)
- 6-nm resolution
- 2% CVs
- HEK293, HeLa, PC3 EVs
- FL: tetraspanins, membrane, EGFP
- low background
- wide dynamic range
- up to 1,000+ events/sec
- intuitive user interface
- also measures cells

<u>KineticRiver.com/Delaware</u> info@KineticRiver.com

The University of Kansas

Toward Flow-Based Rapid Diagnostics of Kidney Disease.

Christopher J. Ward, MBChB, PhD Division of Nephrology and Hypertension Jared Grantham Kidney Institute University of Kansas Medical Center 030724

Speaker Bio

- Trained as a medical doctor 1981-86 (Edinburgh, Scotland).
- PhD Birmingham University UK 1986-1990.
- Worked on ADPKD from 1991-present (33 years).
- Involved in the cloning of *PKD1*, *TSC2* (Oxford) and *PKHD1* (Mayo Rochester).
- Reagent development (monoclonal antibodies).
- Exosome hypothesis of ADPKD.
- Development of assays for diagnosis and prognosis of ADPKD.

Autosomal dominant polycystic kidney disease (ADPKD)

About PKD

- Affects 1:800 people, 425,000 in the US.
- Dominant disease.
- Mainly private mutations.
- Long therapeutic window.
- Multiple treatment in the pipeline, including strategies to increase the gene expression.
- Need for a rapid, low cost and non invasive monitoring test, better than MRI.

Autosomal dominant polycystic kidney disease (ADPKD)

RED: Kidney from normal (WT) and ADPKD mice

S-phase GREEN:

Apoptotic

Polycystic kidney disease genes

We were responsible for identifying the PKD1 gene (1994)

We also developed a model of the proteins U spanning the membrane and developed monoclonal antibodies to the proteins. GPS Cleavage site (3048..3049) VIŠ VIIŠVIIIŠ IXŠ xtracellula IV Signal Peptide
Leucine Rich Repeat (LRR)
Wall Stress Component (WSC)
C-type Lectin
LDL-receptor class A
Polycystin Repeat (PKD)
Receptor Egg Jelly (REJ)
GPCR proteolytic site (GPS)
Cleavage site (GPS)
Polycystin-1, Lipoxygenase, Alpha-Toxin (PLAT)
PKD-Channel
Coiled coil Coiled coil EF-hand Coiled coil Polycystin motif

> Polycystin-1 4300aa

Polycystin-2 1000aa

PC1, PC2 and fibrocystin are found in urine Extracellular vesicles (EVs)

Western blots for polycystins and fibrocystin, Ex = urine exosomes (EVs) r=recombinant

Hogan *et al.* 2009

PC1 enriched urinary exosomes are 100-150nm diameter

Purified from human urine

2008 Proteins Hogan et al 2014 JASN

Volcano Plot of PKD1 vs Normal

-log₁₀ (adjusted p-value) against log₂ (fold change PKD1 vs WT)

Western blot analysis of PC1 levels controlled by CD133.

Linear dose response in batch CV 12%

This Western shows a titration of EVs STD1 & 2 and two repeat loadings to determine the variation in the assay.

A Western blot can be used to diagnose ADPKD but the variability inherent in the assay is such that we cannot determine severity or prognosis.

PC1/CD133 ratio is a promising biomarker for ADPKD.

MS/MS data HtTKV against PC1_CD133 ratio, R²=0.63

This shows that urine EVs contain important information about disease severity.

Increasing PC1

The anti-PC1 monoclonal antibody can detect urinary exosomes.

Other possibilities:

Proteins decreased in ADPKD, for which we have mAbs:

- Polycystin-2 (PC2)
- Exosomal polycystin-1 interacting protein (EPCIP)
- C16orf89 protein
- Fibrocystin

There is one protein that is increased in ADPKD: TMEM2 (CEMIP2) work in progress.

Acknowledgements

- Christopher J. Ward
- Wendy Lea
- Lesya Zelenchuk
- Madhulika Sharma
- Kerri McGreal
- Darren Wallace
- Gail Reif

