

Kinetic River Corp.

Unmet Needs in Fluorescence Flow Cytometry

UNMET NEEDS:

- Spectral spillover → limited # channels PAIN: long, complex runs PAIN: incomplete information
- Spectral spillover → compensation PAIN: population spreading PAIN: wasted time
- Autofluorescence → high background PAIN: reduced sensitivity PAIN: reduced dynamic range

Traditional Flow Cytometry

- continuous light source
- one peak per event

Time-Resolved Flow Cytometry

Time-Resolved Flow Cytometry

Multiple Fluors Recorded on the Same Detector at the Same Time

Multiple Fluors Recorded on the Same Detector at the Same Time

LIFETIME AS A PARAMETER:

DANUBE FLUORESCENCE LIFETIME FLOW CYTOMETER

Fluorescence Lifetime As a Parameter

- can be sensitive local probe
- quantitate FRET (Förster Resonance Energy Transfer)

- probe molecular environment
 - Ca^{2+} , Cl^- , O_2 , pH, temperature
- probe protein-protein interactions

APPLICATIONS

- cell signaling
- cancer cell analysis
- label-free identification of cancer cells

© 2013 PE

Danube: Fluorescence Lifetime FC

- reports fluorescence lifetime
- multiexponentials
- FRET, cell signaling, cell metabolism
- Prof. J. Houston's lab (NMSU)

Danube: 200-ps Lifetime Resolution

Danube: Multicomponent Decays

Proprietary. © 2011-2020 Kinetic River Corp. All Rights Reserved.

RIVER

LIFETIME AS A MEANS TO AN END:

TIBER

LABEL-FREE METABOLIC PROFILE FLOW CYTOMETER

Some Sources of Cellular AF

Islam, M. et al. (2013), Int'l J Mol Sci 14, 1952-1963

Some Sources of Cellular AF

Protein Binding Affects NADH Lifetime

free NADH: short lifetime

 $\alpha_{\rm free}$: free fraction

protein-bound NADH: <u>long</u> lifetime

 $lpha_{ ext{bound}}$: bound fraction

TABLE 1.	Normal Cells	Cancer Cells	
Metabolic Pathway	OxPhos (mitochondria)	aerobic glycolysis (cytosolic)	
Free: Bound NADH Ratio	α _{free} /α _{bound} is LOW	α _{free} /α _{bound} is HIGH	
Free NADH Lifetime, τ _{free} , is SHORT , <0.5 ns			
Protein-bound NADH Lifetime, τ_{bound} , is LONG , >1.5 ns			

Metabolic Profiling by FLIM

- wtHEK293 cells
- lifetime of NADH autofluorescence

KINET

RIVFR

Fig. 2f, Blacker et al., Nat. Comm. 5:3936 (2014) | DOI: 10.1038/ncomms4936

NADH Free vs. Bound by FLIM

NADH free/bound ratio	*#†
Gree / α pound ratio	
1 L Normal	5 mm lesion
~ 1.5 mm lesion 2.0	-2.5 mm lesion

melanoma mouse model

Fig. 3, Pastore, M. N., et al. (2017) Exp. Derm. 26, 607-614

TABLE 1.	Normal Cells	Cancer Cells		
Metabolic Pathway	OxPhos (mitochondria)	aerobic glycolysis (cytosolic)		
Free: Bound NADH Ratio	α _{free} /α _{bound} is LOW	α _{free} /α _{bound} is HIGH		
Free NADH Lifetime, τ_{free} , is SHORT , <0.5 ns				
Protein-bound NADH Lifetime, τ_{bound} , is LONG , >1.5 ns				

Tiber: Label-Free Cancer Cell ID

- squamous cell carcinoma (SCC61 line)
- response to different cancer drug treatments

From Fig. 4B, Shah, A. T., et al. (2014) PLOS ONE 9, e90746

NADH α,

Proprietary. © 2011-2020 Kinetic River Corp. All Rights Reserved.

0.7

Tiber: Free vs. Bound NADH in Flow

- 375-nm excitation
- label-free
- blue FL channel
- NADH in solution, free & bound to lactate dehydrogenase
- direct time-resolved measurements
- FC results mirror FLIM
- next: NADH in cells in flow

LIFETIME AS A MEANS TO AN END:

ARNO COMPENSATION-FREE FLOW CYTOMETER

Lifetime As Means To an End

- distinguish fluors based on color AND lifetime
 - \rightarrow reduce spectral spillover
 - \rightarrow compensation-free
 - \rightarrow expand # parameters

A Four-Color Example

KINETIC

4 Colors: 2 Spectral Bands, 2 Lifetimes

Arno Development Platform

- 3rd generation platform
- 6 parameters (4x FL, FSC, SSC)
- bead SSC singlet CVs ≈ 2%
- bead FL CVs ≈ 6%

Demo Arno Cell Assay: 4 Colors, 2 PMTs, 1 Laser

 each detector measures 2 fluors

KINETIC

Dri Leukocytes

• CD45 / CD3 / CD4 / CD8

Demo Arno CD45/3/4/8 Assay

- Dri Leukocytes
- different markers measured simultaneously, on the same detector
- CD4: short lifetime
- CD3: long lifetime
- signals discriminated
 based on color and lifetime

Arno 8-Peak Rainbow Beads

• Spherotech Rainbow beads

- data from blue channel, short τ
- 7/8 peaks resolved (MESF = 90)

Arno Titrations on Comp Beads

• titrated CD8 / QD605 on universal capture beads

• 3 decade dynamic range (for now)

14-Parameter, No-Comp Arno

12 Antibodies with 6 Colors

- 2 lasers: 405, 488 nm
- 6 detectors
- 2 lifetimes in each channel

KINETIC RIVER

KINETIC RIVER A FEW THINGS YOU MAY NOT KNOW ABOUT US

Kinetic River: A Growing Team

Giacomo Vacca, PhD Founder & President

KP Shevgaonkar, MS Biomedical Scientist

Alan Chin, PhD Sr. Staff Scientist, Project Mgr.

Eli Kashi, MS Mechanical Engineer

Haely Shah, MS Algorithm Engineer

PhD

Sr. Staff Scientist

Tim Gray, MS Mfrg. Engineer

Ashley Sloat, PhD Patent Agent IP Advisor

Richard McKay, PhD Technical Sales Advisory Board

Alastair Hood, PhD Advisory Board

Rosemary Coates, MBA Advisory Board

Sean Murphy, MS Advisory Board

Linda Vahdat, MD, MBA Advisory Board

Kinetic River: A Growing Business

- \$2.2M in NIH-NIGMS grants
- 2-year SBIR Phase II Arno development funding (current)
- new sales / engineering offices in US East Coast, Italy / Southern EU
- expanding consulting activities (expert witness)

Kinetic River Analyzer at NCI

- customized design
- Dr. Bill Telford (Core Lab Mgr.)
- 488 + external lasers (stacked beams)
- 7 detectors
 (5 FL + FSC, SSC)
- customized for external 266-nm excitation

KINETIC

We Can Run Samples For You!

- scientific collaboration
- sample analysis as a service
- or "try before you buy"
- e.g.:
 - Danube (lifetime)
 - Tiber (metabolism)
 - Colorado (elimin. autofluorescence)

Tuolomne: Standalone PMT Amplifiers

- 4x detector amplifier
- handles PMTs, SiPMS
- regular or inverted output
- replaces DarklingX (RIP)

Shasta: Standalone Fluidic Control

- dual hydrostatic control
- extremely stable flow
- can be used to replace built-in fluidics
- Shasta: uses house air
- Shasta+: built-in pressure sources

KINETIC RIVER

Acknowledgements

- Research supported in part by the National Institute of General Medical Sciences of the U.S. National Institutes of Health under grant numbers, 1R43GM131619-01, 1R43GM128546-01, 1R43GM123906-01, and 2R44GM123906-02A1.
- K.P. Shevgaonkar, R. McKay, A. Chin, E. Kashi, H. Shah (Kinetic River)
- D. Vacca, A. Singhal (summer interns)
- R. Jimenez, E. Shain, C. Heyes, S. Gunupudi (consultants)

www.KineticRiver.com

Kinetic River

