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ABSTRACT

A knowledge of the structural behavior of molecules confined in thin liquid films and the way

in which they differ from bulk behavior is of great importance to a variety of technological

applications. We discuss X-ray scattering studies of the conformation of liquid polymer wetting

layers on laterally structured substrates in order to test theories of the conformality of the wetting

layer to the substrate. Recent work on guided X-ray beams confined to the thin film opens up the

possibility of detailed studies of ordering phenomena in molecular layers adjacent to solid

surfaces. Recent experiments are discussed.

In this article, we take "confined geometries" to mean situations where all interfaces present

have an effect on determining the structure or morphology of the fluid confined between them, as

opposed to purely two-dimensional or surface behavior. Thus, thin films which have thickness

comparable to or smaller than a typical interaction or correlation length in the material of the film

are candidates for discussing the behavior of fluids in confined geometry, as opposed to much

thicker films which reflect simply the sum of the behavior at each of the film interfaces.

Wetting of solid surfaces by liquid films is an example of such confined behavior until bulk

liquid behavior is reached at large film thicknesses. A problem of continuing interest is the

wetting of laterally structured (e.g., rough or periodically modulated) surfaces and the

conformality to the substrate of the wetting layer. This is a problem which can be probed

conveniently and accurately by X-ray scattering studies, and a few such studies have been carried

out on wetting films on rough substrates by studying off-specular scattering of synchrotron X-rays

[1,2]. In the first part of this paper, we discuss the use of periodically structured substrates to

study the conformation of liquid polymer wetting layers. Some preliminary results have been

presented earlier [3].
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According to a theory proposed by Robbins, Andelman, and Joanny [4] the fluctuations of
the top of a (liquid) wetting film are correlated with those on a (solid) substrate below via the
relation

(1)

where 5zj( q ) is the (two-dimensional) Fourier transform of the height fluctuations 5zj(x,y) of

the substrate and 5z2 (q ) is the corresponding function for the top surface of the film. (. is the

film thickness and Eq. (1) is valid in the linearized theory [4]. We may define a length given by

= (Aeff/27iy)1/2
(2)

where Aeff is the effective Hamaker constant for the Van der Waals interaction between the
liquid and the substrate and y is the surface tension between the liquid and the overlying vapor.
In terms of a, we can define another length £ given by

= ^ 2 / a

In terms of this, the response function y.(q,t) is given by

(3)

K(q)

1 + qV
(4)

where K(q) is a function which can be taken as - 1 in the so-called Deryagin approximation [4],

valid when q



Fig. 1. Laterally structured Si diffraction grating schematic.

For a laterally structured substrate such as the diffraction grating structure indicated in

Fig. 1, the relation in Eq. (1) can be tested for a discrete one-dimensional set of q-vectors, given

by qn = n - 2 7 C / d (q normal to the strips of the diffraction grating) where d is the grating

spacing. The present experiments were carried out on nanofabricated silicon gratings of spacing

d ~ IM while the polymer films had thicknesses of ~100 A so that the condition q^«l was

satisfied for the experiments.
Consider a set of interfaces of area A given b y z n ( x ) ( n = l , 2, 3 ; n = l corresponding to

the silicon substrate height, n = 2 to the height of the oxide film on the substrate (assumed to be

perfectly conformal with it), and n = 3 to the height of the top surface of the polymer film), where

x is the direction normal to the grating strips. In the Born Approximation, the X-ray scattering
intensity for wavevector transfer qx in the plane and qz normal to the surface is given by [5,6]

•A -» in
--*• I ApkAPjeiq:

qz m j,k=l

(x)e~ ( a j (5)

where (a) we have assumed that open detector slits in the out-of-scattering-plane direction have
integrated over all qy (b) zn is a reference height for interface n (e.g. for n = 1, z j = 0) (c) an is

the rms roughness for interface n (d) Ap^ represents the difference in scattering length density

(proportional to electron density difference) across interface k and



(6)

where 6zk(x) is the height of interface k relative to its reference height z^. In Eq. (5), we have

neglected the diffuse scattering from random roughness fluctuations, so that the scattering exists

only on "truncation rods" (qx = m-2rc/d) as a function of qz, corresponding to the various orders

of diffraction from the grating (m = 0 corresponds to the specular reflectivity).

If the top surface 5zfc(x) (k = 3) follows the lower two interfaces perfectly (conformal film),

then the phase relations between the coefficients will be such that modulations of S( q )

with period (2n/£) in qz will exist for all m. (For the specular reflectivity (m = 0), these would

give the usual "Kiessig fringes" superimposed on another set of fringes arising from the height of

the grating strips themselves [5,6].) As the top film surface loses conformality with the substrate

these fringes will "wash out" for the rods corresponding to higher m values.

The measurements were done at the XI OB beamline of the NSLS Synchrotron Source at

Brookhaven, using a wavelength of 1.131 A. Data were taken along rods corresponding to the

orders m = 0 through m = 4 for the bare grating (Si + oxide overlayer) plus various thicknesses of

overlaid polymer films, the diffuse background (corresponding to roughness scattering) being

subtracted off by measuring it along qz-rods slightly displaced from the rod positions qx = m-(2n

/d). From these scans, using Eq. (5) and the shape of the diffraction grating strips shown in Fig.

1, the geometrical parameters for the grating, the rms roughness of its surface and the thickness

and roughness of the oxide layer and the parameters corresponding to the upper film surface (see

below) were determined by least squares fitting. (Note that the Born Approximation expression

(Eq. (5)) works only for values of qz larger than those corresponding to the critical angle for total

external reflection.) From these, the lateral periodicity d of the grating was determined to be

9800 A, the height of the strips to be 132 A, the width of the grooves and bars to be 4000 A, the

thickness of the oxide layer to be 10 A and the roughness of the Si/SiC>2 and SiC>2 surfaces to be

5 A. These parameters are in semiquantitative agreement with those obtained from AFM studies

of the substrate using a commercial Nanoscope III instrument in the contact mode. The
polystyrene films were first spun onto a glass substrate to determine the thickness of the films

with an ellipsometer. Afterwards, they were floated on a water surface and then picked up on the

surface of the grating. Finally they were annealed for 2 hours at 185°C in a vacuum oven during

which time it was assumed the liquid polymer film achieved equilibrium with the substrate. The

thickness was built up by adding several such polymer films in succession and annealing each time

to melt them into one film. For the top surface of the polymer film a Fourier series expansion was

used for 5z3(x), i.e.

t

c

f
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8z3(x)=
p>0

(7)

and only the terms p = 1, 3 were taken as non-zero. (From AFM studies of the top surfaces of

these films, it was qualitatively seen that the surfaces became rapidly sinusoidal for increasing i.)

Substituting Eq. (7) in Eq. (6), and using Eq. (5), the data along all the rods were fitted

(after diffuse background subtraction) for each film thickness (, and from the ratios of the fp to

the corresponding Fourier coefficients of 5zj(x) for the grating, the values of x(qp^)

(qp = p.2rc/d) determined. Some representative data sets for the rod scans for the thinnest and

thickest films and the corresponding films are shown in Figs. 2. It may be seen for the larger
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Fig. 2. Background-subtracted qz (rod) scans corresponding to the various diffraction orders (m)
for the 275 A polymer film (a) and the 695 A polymer film (b). The solid curves are the
model fits.

thickness that the modulations in qz are eliminated for the higher order rods showing a loss of

conformal modulation of the top film surface. Fig. 3 shows the quantities x(qi^) and X(Q3/) as a

function of t along with the theoretical result in the linear Deryagin approximation given by Eq.

(4). The solid curve is calculated with the length a = 5 A as expected from Eq. (2) with the

known values of A^ff and r\ and clearly does not explain the data. The expression (4) can,

however, be made to fit the data if a is chosen as aeff = 75 A as seen in Fig. 3. The reasons for



this somewhat unrealistic value for the length a are not clear at present. One possible explanation

could be that with the (relatively deep rectangular grooves of the grating, the linear theory of Eq.

(4) is not valid and must be replaced by a full non-linear calculation, of the type done by Robbins

et al. [4]. Another explanation could be that the film equilibrium is determined not purely by

surface tension but by viscoelastic forces upon solidification [7]. At any rate the degree of

oonformality for thick films is quantitatively far greater than the simple theory would predict. In

particular, the first harmonic modulation of the top film surface appears to become almost

constant in amplitude (or decay very slowly) at large film thicknesses.
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Fig. 3. Comparison of measured ^(q.f) for q = qo and q = 3 qo as a function of t with the theory
of Eqs. (2)-(4).

In the second part of this paper, we discuss methods of using X-ray scattering to determine

in-plane molecular ordering in confined thin films. Recently, several experimental and computer

simulation studies of liquid films of the order of tens of molecular diameters thick and confined

between two solid walls have suggested both layering and lateral ordering of the molecules in the

film, particularly adjacent to the solid surfaces. Very little direct confirmation of such ordering is

available by diffraction techniques, although some X-ray scattering studies of 4000 A thick liquid

crystal films between mica plates have been recently reported by Idziak et al. [8]. The problem

one faces in X-ray scattering studies of very thin films between solid surfaces is the problem of

getting the X-ray beam in and out of the surrounding solid medium and still being able to

distinguish the relatively weak signal of a single or few layers ordering above the diffuse

background from the solid. We shall outline here a possible method for doing this by utilizing the

film itself as an X-ray wave guide or resonant beam coupler [9,10]. Consider a thin film of lower

electron density bounded by media of higher electron density as shown in Fig. 5. Since the

refractive index for X-rays (neglecting absorption effects) is given by



n = l-
mc2 27i (8)

where p is the electron density of the medium, the film can sustain modes which correspond to

constructively interfering totally reflected beams from each surface, since the film has a higher

refractive index than its bounding media. Now consider the case where the overlayer is very thin

so that a wave incident on the top surface from air and totally reflected from it has an evanescent

component in the overlayer which can tunnel into and excite one of the resonant modes in the

underlying film. The situation is analogous to a one-dimensional potential well illustrated in Fig.

4, since for the direction normal to the film (z-direction) the wave equation for the X-rays maps

on to the one-dimensional Schrodinger equation for particles of mass m in a potential V given by
2 2

(e /me )47ip. The "particle energy" then stands for k , kz being the normal
2m 2m z

component of the incident X-ray wavevector in free space. The film with a dense overlayer then

maps on to the square well potential shown in Fig. 4, which has bound states that correspond to

resonance occurs if and only if:

k^ = k"?

Fig. 4. Illustration of resonant tunnelling of X-rays into a thin film of refractive index (n2) greater
than those of its substrate (n3) and overlayer (nj).



the guided modes of the film. If the incident kz is such that it matches one of these resonances, a

wave of very large amplitude can be built up in the film. Physically this means that a plane wave

of width W incident on the top overlayer can couple most of its energy into the film of thickness

(., achieving a flux enhancement of ~ (W/^) before this energy is either absorbed in the film or

leaks out through the overlayer (or it can stay trapped in the film by having the overlayer become

thick in the region beyond the incident beam footprint). This is the basis for optical beam thin film

coupling devices developed in the 1970's [11]. The theory of this coupling and flux compression

was worked out by R. De Wames and the present author around that time [12]. It should be

noted that similar resonance effects in thin films were also discussed independently by Croce and

Pardo [13] for both X-rays and neutrons in terms of a Fabry-Perot interferometer. Guided X-ray

waves in thin films were independently demonstrated by Spiller and Segmuller in the 1970's [14].

However, it is with the advent of highly brilliant synchrotron sources and coherent beams from

these that one has the hope of realizing the potentially large flux compressions with such a device

(since W above cannot be larger than a coherence width of the incident beam which is also

assumed to be highly collimated and monochromatic). Such flux enhancement with resonant

beam couplers have been demonstrated by Feng et al. [9,15] at the NSLS and ESRF synchrotron

sources. Wang et al. have also demonstrated a similar "quasi-resonant" enhancement of the flux

in a thin film without an overlayer [16]. Fig. 5 shows the device used which utilized a Si

substrate, a polyimide film (thickness ~ 1200 A), and a SiC>2 overlayer. Fig. 6 shows dips in the

reflectivity from the overlayer below the critical angle (i.e., in the totally reflected region)

corresponding to the various resonant guided modes in the film, and Fig. 7 shows the angular

distribution of intensity emerging from the decoupling region corresponding to the various guided

modes excited when the incident beam is set for exciting a single resonance, this being due to

mode mixing effects [17]. Finally, Fig. 8 shows the far field diffraction pattern from a guided

beam emerging from a truncated waveguide (i.e., exiting form the edge of the film itself instead of

from a decoupling thin overlayer) together with the calculated pattern based on the field

distribution for the particular modes excited [15]. With such a device to enhance the flux inside a

thin film and minimize scattering from the bounding solid media (in which the field is evanescent

away from the film) it should be possible to study molecular ordering conveniently and elegantly

in thin confined liquid films. Such experiments are planned for the near future. In closing, we

should also point out that the technique can also be used with neutrons, although the flux gain in

the film is much lower due to the lower brilliance and coherence of neutron sources. Guided

neutron wave propagation and resonance effects have recently been demonstrated by several

groups [18-22] and remain to be explored more fully for studying confined films.
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Fig. 5. Illustration of waveguide device showing the Si substrate, thin polymer film and the thin
SiC>2 overlayer (with the thick overlayer in the guided region in the middle).
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Fig. 6. The reflectivity of the Resonant Beam Coupler from the coupling region. The five dips for
Sine < 0.16° signify the five TE modes. The solid line represents a fit using the standard
EM theory for multilayers (from Ref [9]).
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Fig. 7. The X-ray intensity exiting the decoupler with 9jnc = 0.128° to excite the TE1 mode only.
The four peaks and the shoulder correspond to all 5 guided TE modes excited in the guide
due to mode mixing. The small magnitude of Ij is primarily due to absorption in the guide
(from Ref. [9]).
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Fig. 8. Far-field intensity as a function of angle 0one out of the plane of the waveguide for a
guided X-ray beam exiting the truncated end of a 600 A thin-film polymer waveguide with
Si substrate and SiC>2 overlayer. The calculated curve is obtained from the Fourier
transform of the electric field distribution in the guide in an excited symmetric TE mode
(from Ref [15]).
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